Numpy in Hindi – Python Creating Arrays in Hindi – Numpy Arrays Ke Sath Kaam Karta Hai. Array Object Ko Ham Numpy Me ndarray Kahte Hai |
Yadi Aapne HTML Full Course And CSS Full Course And Python Full Course And PHP Full Course Nhi Read Kiya Hai To Aap Vah Bhi Read Kar Sakte Hai |
Numpy Creating Arrays
Contents
Numpy Me Arrays Ko Create Karne Ke Liye array() Function Ka Istemal Karna Hota Hai.
Waise Sabse Pahle Numpy Ko Import Karna Hoga And Import Karne Ke Liye Aapko import numpy as np likhna hoga |
Example:
ndarray Ko Create Karne Ke Liye Ham Ek List Or Tuple Bhi Create Kar Sakte Hai or Fir Us List Or Tuple Ko array() Function Pass Kar Dete Hai Or Uske Bad numpy.array() Function ndarray Me Convert Kar Deta Hai |
import numpy as np list_np = [1,2,3,4] #python list arr = np.array(list_np) print(arr)
Output:
[1 2 3 4]
Check Data Type Usind Type Function
import numpy as np list_np = [1,2,3,4] #python list arr = np.array(list_np) print(type(arr))
Output:
<class 'numpy.ndarray'>
type() function Return Me Data Type Print Karta Hai Jaise Ki Upper Example Me Dikhaya Gaya Hai |
Types Of Dimensions in Arrays

Arrays Me Dimensions Koi Types Ke Hote Hai And Inka Istemal Alag Alag Tarike Se Hota Hai.
Types Of Dimensions Ko Ab Ham Ek Ek Karke Dekhne Wale Hai.
0-Dimension Array
0-D arrays, Or Scalars Matrix Ye Elements Hai array Ke Or 0-D Array Me Har Ek Value 0-D Array Hoti Hai |
Example:
import numpy as np arr - np.array(30) print(arr)
Output:
30
1-Dimension Array
Ab Ham 1-D Array Ka Example Dekhte Hai | [1-D Array]
Example:
import numpy as np arr = np.array([45,5,64,56]) print(arr)
Output:
[45 5 64 56]
2-Dimension Array
[[1-D Array],[1-D Array]] = [[2-D Array ]]
Example:
import numpy as np arr = np.array([[45,5,64,56],[4,55,4,6]]) print(arr)
Output:
[[45 5 64 56] [ 4 55 4 6]]
3-Dimension Array
[[[ 3-D Array ]]]
Also Read – NumPy – Introduction
Example:
import numpy as np arr = np.array([[[1,2,3,4],[5,6,7,8],[1,2,3,4],[5,6,7,8]]]) print(arr)
Output:
[[[1 2 3 4] [5 6 7 8] [1 2 3 4] [5 6 7 8]]]
N-Dimension Array
Agar Hame Kuch Jyada Hi Dimension Ko Create Karna Hai To Aap ndmin Function Ka Istemal Karke Kar Sakte Hai |
Example:
import numpy as np arr = np.array([1,2,3,4] , ndmin=4) print(arr)
Output:
[[[[1 2 3 4]]]]
Check Number of Dimensions?
Dimensions Number Ko Check Karna Ho To Ham ndim Function se Kar Sakte Hai |
Example:
import numpy as np a = np.array(42) b = np.array([1, 2, 3, 4, 5]) c = np.array([[1, 2, 3], [4, 5, 6]]) d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) print(a.ndim) print(b.ndim) print(c.ndim) print(d.ndim)
Output:
0 1 2 3
Also Read – NumPy – Environment + Setup + Anaconda
Friends Mujhe Umeed Hai Ki Aapko Numpy Array in Hindi Ke Bare Mai 100% Jankari Ho Gayi Hogi | Agar Aapko Learn Karne Main Dikkat Aa Rahi Hai To Aap Mere Se Contact Kar Sakte Hai |