Data Science Course In Hindi :- Data Science Course Ko Mai Agar Aap Learn Karna Chahte Hai to Aap Ye Plog Ko Read Karke Sakte Hai |
Data Science Course In Hindi
Ham Pahle Data Science Course Ka Jo Full Course Hai | Wo Ham Chapter Wise Add Kar Dete Hai . Aap Chapter Wise Course Ko Dekh Kar Post Read Kar Sakte Hai | Agar Appko Post Find Karne Me Dikkat Hoti Hai To Aap Home Page Par Click karke Search Kar Sakte Hai Is Blog me Data Science Full Course In Hindi Mai Available Hai Wo Bhi Total Hindi Mai |

1. Introduction to Data Science
2: Python (Core)
- Python A to Z full Course In Hindi
- Python setup
- Python IDE
- Variables
- Escape Sequence In Python
- Row String in python
- How To Print Imoji in python
- Arithmetic Operator in python
- Python Operators
- String In Python
- Input Function in Python
- int function python
- String Formatting Python
- String indexing & String Slicing
- Len Function
- Lower & Upper Function
- Count Function
- String Indexing
- Title Function
- Find Function
- Replace Function
- Range Function & Step Argument
- Center Method
- Comparison Operator
- Operator In Python
- Or & And Operator
- Keyword in python
- If Statement
- Pass Statement
- If Else Statement
- If Elif Else Statement
- Nested If Else
- Break Statement
- Continue Statement
- For Loop
- While Loop
- Home Assignment
- String
- List
- Dictionary
- Tuple
- Set
- Functions
- Lambda Expression
- Map Function
- Zip Function
- Any & all Function
- Reduce Function
- Max & Min Function
- Filter Function
- Python Numpy
- OOPS
- Module
- Exception
- Home Assignment
- Python File Handling
- File Operation
- File Reading
- File Writing
- Appending File
- Python Delete Files
3: Scientific Used in Python for Data Science
- Understand IDE Jupyter notebook & Customize Settings
- NumPy
- Pandas
- Scipy
- scikit-learn
- Matplotlib
- scify
- statmodels
- nltk
- etc
4: Accessing / Importing and Exporting Data using Python Modules
- Importing Data from various sources – Csv File, txt, excel, access etc
- Database Input (Connecting to database)
- Viewing Data objects – sub setting, methods
- Exporting Data to various formats
- Important python modules: Pandas, beautiful soup etc.
5: Data Manipulation – Cleansing – Mugging using Python Modules
- Cleansing Data with Python
- Data Manipulation steps(Sorting, filtering, duplicates, merging, appending, sub setting, derived variables, sampling, Data type conversions, renaming, formatting etc)
- Data manipulation tools(Operators, Functions, Packages, control structures, Loops, arrays etc)
- Python Built-in Functions (Text, numeric, date, utility functions)
- Python User Defined Functions
- Stripping out extraneous information
- Normalizing data
- Formatting data
- Important Python modules for data manipulation (Pandas, Numpy, re, math, string, date time etc)
6: Data Analysis – Visualization using Python
- Introduction exploratory data analysis
- Descriptive statistics, Frequency Tables and summarization
- Univariate Analysis (Distribution of data & Graphical Analysis)
- Bivariate Analysis (Cross Tabs, Distributions & Relationships, Graphical Analysis)
- Creating Graphs- Bar/pie/line chart/histogram/ box plot/ scatter/ density etc)
- Important Packages for Exploratory Analysis -NumPy Arrays, Matplotlib, seaborn, Pandas and scipy stats etc
7: Basic Statistics & Implementation of Stats Methods in Python
- Basic Statistics – Measures of Central Tendencies and Variance
- Building blocks – Probability Distributions – Normal distribution – Central Limit Theorem
- Inferential Statistics -Sampling – Concept of Hypothesis Testing
- Statistical Methods – Z/t-tests (One sample, independent, paired), Anova, Correlation and Chi-square
- Important modules for statistical methods: Numpy , Scipy , Pandas
8: Python: Machine Learning – Predictive Modeling – Basics
- Introduction to Machine Learning & Predictive Modeling
- Types of Business problems – Mapping of Techniques – Regression vs. classification vs. segmentation vs. Forecasting
- Major Classes of Learning Algorithms -Supervised vs Unsupervised Learning
- Different Phases of Predictive Modeling (Data Pre-processing, Sampling, Model Building, Validation)
- Over fitting (Bias-Variance Trade off) & Performance Metrics
- Feature engineering & dimension reduction
- Concept of optimization & cost function
- Concept of gradient descent algorithm
- Concept of Cross validation(Bootstrapping, K-Fold validation etc)
- Model performance metrics (R-square, RMSE, MAPE, AUC, ROC curve, recall, precision, sensitivity, specificity, confusion metrics )
9: Machine Learning Algorithms & Applications – Implementation in Python
- Linear & Logistic Regression
- Segmentation – Cluster Analysis (K-Means)
- Decision Trees (CART/CD 5.0)
- Ensemble Learning (Random Forest, Bagging & boosting)
- Artificial Neural Networks(ANN)
- Support Vector Machines(SVM)
- Other Techniques (KNN, Naïve Bayes, PCA)
- Introduction to Text Mining using NLTK
- Introduction to Time Series Forecasting (Decomposition & ARIMA)
- Important python modules for Machine Learning
- (SciKit Learn, stats models, scipy, nltk etc)
- Fine tuning the models using Hyper parameters, grid search, piping etc.
Data Science Course In Hindi
Dosto mujhe ummed hai ki aap Data Science Full Course In Hindi ko acchi tarah se samanj gye honge agar aap ko ye post acchi lage to mere is website ko jarur follow kre or ha agar aap video bhi dekhna chahte hai to aap mere channel ko bhi subscribe kar sakte hai. channel ka link aapko home page par mil jayega |